Abstract

Drowsy driving is one of the leading causes of motor vehicle accidents in North America. This paper presents the use of eye tracking data as a non-intrusive measure of driver behavior for detection of drowsiness. Eye tracking data were acquired from 53 subjects in a simulated driving experiment, whereas the simultaneously recorded multichannel electroencephalogram (EEG) signals were used as the baseline. A random forest (RF) and a non-linear support vector machine (SVM) were employed for binary classification of the state of vigilance. Different lengths of eye tracking epoch were selected for feature extraction, and the performance of each classifier was investigated for every epoch length. Results revealed a high accuracy for the RF classifier in the range of 88.37% to 91.18% across all epoch lengths, outperforming the SVM with 77.12% to 82.62% accuracy. A feature analysis approach was presented and top eye tracking features for drowsiness detection were identified. Altogether, this study showed a high correspondence between the extracted eye tracking features and EEG as a physiological measure of vigilance and verified the potential of these features along with a proper classification technique, such as the RF, for non-intrusive long-term assessment of drowsiness in drivers. This research would ultimately lead to development of technologies for real-time assessment of the state of vigilance, providing early warning of fatigue and drowsiness in drivers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.