Abstract
This article aims to study the non-Fickian water absorption process in vegetable fiber-reinforced polymer composite using the Langmuir-type model, evaluating the influence of mass diffusivity on the process. The numerical solutions of the governing equations were obtained using the finite-volume method. Transient results of the local and average moisture content, free and entrapped water molecules concentration considering the constant diffusivity and as a function of the average and local moisture content were presented and analyzed. It was observed that the mass diffusivity effectively influences the water absorption behavior, especially in the initial time of the process, where higher differences in the water migration rates into the material are found. The largest free and entrapped water molecule concentration gradients were found close to the composite surface, especially when considering constant mass diffusivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.