Abstract
We present first-order non-eikonal correction to the eikonal phase shifts for heavy ion elastic scattering based on Coulomb trajectories of colliding nuclei. It has been applied satisfactorily to elastic angular distributions of the 12 C + 12 C system at E lab = 240, 360 and 1016 MeV. The refractive oscillations observed in the elastic scattering angular distributions could be explained due to interference between the near- and far-side amplitudes. The presence of a nuclear rainbow is evidenced through classical deflection function. We have found that the first-order non-eikonal effect on the imaginary potential is important when the absorptive potential is weak and the real potential is strong.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.