Abstract

Self-piercing riveting (SPR) has been widely used in automobile body jointing. However, the riveting process is prone to various forming quality failures, such as empty riveting, repeated riveting, substrate cracking, and other riveting defects. This paper combines deep learning algorithms to achieve non-contact monitoring of SPR forming quality. And a lightweight convolutional neural network with higher accuracy and less computational effort is designed. The ablation and comparative experiments results show that the lightweight convolutional neural network proposed in this paper achieves improved accuracy and reduced computational complexity. Compared with the original algorithm, the algorithm’s accuracy in this paper is increased by 4.5%, and the recall is increased by 1.4%. In addition, the amount of redundant parameters is reduced by 86.5%, and the amount of computation is reduced by 47.33%. This method can effectively overcome the limitations of low efficiency, high work intensity, and easy leakage of manual visual inspection methods and provide a more efficient solution for monitoring the quality of SPR forming quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.