Abstract

We demonstrate theoretically that the presence of ions in insulating materials such as nematic liquid crystals may be responsible for the dielectric spectroscopy behavior observed experimentally. It is shown that, at low frequencies, an essentially non-Debye relaxation process takes place due to surface effects. This is accomplished by investigating the effects of the adsorption-desorption process on the electrical response of an electrolytic cell when the generation and recombination of ions is present. The adsorption-desorption is governed by a non-usual kinetic equation in order to incorporate memory effects related to a non-Debye relaxation and the roughness of the surface. The analysis is carried out by searching for solutions to the drift-diffusion equation that satisfy the Poisson equation relating the effective electric field to the net charge density. We also discuss the effect of the mobility of the ions, i.e., situations with equal and different diffusion coefficients for positive and negative ions, on the impedance and obtain an exact expression for the admittance. The model is compared with experimental results measured for the impedance of a nematic liquid crystal sample and a very good agreement is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.