Abstract

Kirchhoff type shells are continuum models used to study the mechanics of thin elastic bodies; these are largely based on the theory of surfaces. Here, we report a reformulation of Kirchhoff shells using the theory of moving frames. This reformulation permits us to treat the deformation and the geometry of the shell as two separate entities. The structure equations which represent the familiar torsion and curvature free conditions (of the ambient space) are used to combine deformation and geometry in a compatible way. From such a perspective, Kirchhoff type theories have non-classical features which are similar to the equations of defect mechanics (theory of dislocations and disclinations). Using the proposed framework, we solve a boundary value problem and thus demonstrate, to an extent, the importance of moving frames.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.