Abstract

A non-adiabatic quantum dynamics methodology based on a time-independent coupled-channel approach is applied to the fully symmetric H + H2(v=4-8,j=0) → H + H2(v′,j′) reaction for the first time. A two-state diabatic representation is used which includes the effects of the geometric phase (GP) and other non-adiabatic couplings. Ultracold rate coefficients are reported as a function of collision energy between 1μK and 100K. A second set of adiabatic calculations are also performed both with and without the GP. The results for v>4 are reported here for the first time and a new experimentally detectable signature of the GP is discovered associated with the dramatic appearance of an l=1 shape resonance near 1K in the total rate coefficient for v=6 which is absent for v=4 and 5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.