Abstract
We introduce lattice gauge theories which describe three-dimensional, gapped quantum phases exhibiting the phenomenology of both conventional three-dimensional topological orders and fracton orders, starting from a finite group $G$, a choice of an Abelian normal subgroup $N$, and a choice of foliation structure. These hybrid fracton orders -- examples of which were introduced in arXiv:2102.09555 -- can also host immobile, point-like excitations that are non-Abelian, and therefore give rise to a protected degeneracy. We construct solvable lattice models for these orders which interpolate between a conventional, three-dimensional $G$ gauge theory and a pure fracton order, by varying the choice of normal subgroup $N$. We demonstrate that certain universal data of the topological excitations and their mobilities are directly related to the choice of $G$ and $N$, and also present complementary perspectives on these orders: certain orders may be obtained by gauging a global symmetry which enriches a particular fracton order, by either fractionalizing on or permuting the excitations with restricted mobility, while certain hybrid orders can be obtained by condensing excitations in a stack of initially decoupled, two-dimensional topological orders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.