Abstract

BackgroundThe 70-gene signature (70-GS, MammaPrint) test has been recommended by the main guidelines to evaluate prognosis and chemotherapy benefit of hormonal receptor positive human epidermal receptor 2 negative (HR + /Her2−) early breast cancer (BC). However, this expensive assay is not always accessible and affordable worldwide. Based on our previous study, we established nomogram models to predict the binary and quartile categorized risk of 70-GS.MethodsWe retrospectively analyzed a consecutive cohort of 150 female patients with HR + /Her2− BC and eligible 70-GS test. Comparison of 40 parameters including the patients’ medical history risk factors, imaging features and clinicopathological characteristics was performed between patients with high risk (N = 62) and low risk (N = 88) of 70-GS test, whereas risk calculations from established models including Clinical Treatment Score Post-5 years (CTS5), Immunohistochemistry 3 (IHC3) and Nottingham Prognostic Index (NPI) were also compared between high vs low binary risk of 70-GS and among ultra-high (N = 12), high (N = 50), low (N = 65) and ultra-low (N = 23) quartile categorized risk of 70-GS. The data of 150 patients were randomly split by 4:1 ratio with training set of 120 patients and testing set 30 patients. Univariate analyses and multivariate logistic regression were performed to establish the two nomogram models to predict the the binary and quartile categorized risk of 70-GS.ResultsCompared to 70-GS low-risk patients, the high-risk patients had significantly less cardiovascular co-morbidity (p = 0.034), more grade 3 BC (p = 0.006), lower progesterone receptor (PR) positive percentage (p = 0.007), more Ki67 high BC (≥ 20%, p < 0.001) and no significant differences in all the imaging parameters of ultrasound and mammogram. The IHC3 risk and the NPI calculated score significantly correlated with both the binary and quartile categorized 70-GS risk classifications (both p < 0.001). The area under curve (AUC) of receiver-operating curve (ROC) of nomogram for binary risk prediction were 0.826 (C-index 0.903, 0.799–1.000) for training and 0.737 (C-index 0.785, 0.700–0.870) for validation dataset respectively. The AUC of ROC of nomogram for quartile risk prediction was 0.870 (C-index 0.854, 0.746–0.962) for training and 0.592 (C-index 0.769, 0.703–0.835) for testing set. The prediction accuracy of the nomogram for quartile categorized risk groups were 55.0% (likelihood ratio tests, p < 0.001) and 53.3% (p = 0.04) for training and validation, which more than double the baseline probability of 25%.ConclusionsTo our knowledge, we are the first to establish easy-to-use nomograms to predict the individualized binary (high vs low) and the quartile categorized (ultra-high, high, low and ultra-low) risk classification of 70-GS test with fair performance, which might provide information for treatment choice for those who have no access to the 70-GS testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.