Abstract

A novel matrix completion algorithm based on the iterative application of neural networks is presented. It is shown that Bayesian regularization provides proper protection against overfitting, more so than early-stopping or a combination of both. The flexibility to increase the size of the hidden layer provides a better description of increasingly nonlinear relationships between the known and missing values in the data with a limited loss in generalization ability. The proposed neural network algorithm provides a more accurate estimation of missing values than current matrix completion algorithms based on iterative regression approaches or PCA applications for many datasets with fractions of missing values from 5 to 40%. The neural network algorithm performs particularly well on datasets where the number of observations significantly exceeds the number of features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.