Abstract

Denoising of spectra has been a great challenge in hyperspectral image analysis. Near-infrared hyperspectral images of milk powder, rice flour and soybean flour were acquired and denoising in the spectral domain were studied. Noise free spectra and noises were simulated based on sample pixel-wise spectra. The noisy spectra with signal to noise ratio (SNR) around 45 ​dB (similar to real pixel-wise spectra) were simulated. The simulated noisy spectra were preprocessed by traditional methods as moving average smoothing (MAS), Savitzky-Golay smoothing (SGS), wavelet transform (WT) and empirical mode decomposition (EMD). The basic denoising autoencoder (DAE-1) and the stacked DAE (DAE-2) were studied for denoising. The noisy spectra with SNR around 35 ​dB and 55 ​dB were further simulated to explore the effectiveness of DAE based methods. DAE-1 and DAE-2 performed better than the other methods, with higher SNR, lower mean squared error (MSE) and mean absolute error (MAE). The developed DAE methods were applied to real-world pixel-wise spectra with good performances. The overall results proved the feasibility of using DAE based methods for noise reduction in the spectral domain of hyperspectral images, and the DAE based methods have great potential to be extended to spectral denoising of other vibrational spectroscopy techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.