Abstract

PurposeTo assess the effect of a noise-optimized image-based virtual monoenergetic imaging (VMI+) algorithm in direct comparison with the traditional VMI technique and standard linearly-blended images emulating 120-kVp acquisition (M_0.3) on image quality at dual-energy CT in patients with lung cancer. Materials and MethodsDual-source dual-energy CT examinations of 48 patients with biopsy-proven primary (n=31) or recurrent (n=20) lung cancer were evaluated. Images were reconstructed as M_0.3, and VMI+ and traditional VMI series at 40, 55, and 70keV. Attenuation of tumor, descending aorta, pulmonary trunk, latissimus muscle, and noise were measured. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Five-point scales were used by three observers to subjectively evaluate general image impression, tumor delineation, image sharpness, and image noise. ResultsBackground noise was consistently lower with VMI+ compared to VMI at all keV levels (all p<0.0001) and M_0.3 (all p≤0.0004). Tumor SNR and CNR peaked in the 40keV VMI+ series, significantly higher compared to all VMI and M_0.3 series (all p<0.0008). Observers preferred the 55keV VMI+ series regarding general image impression and tumor delineation compared to all other series (all p<0.0001). Image sharpness and image noise ratings were highest in the 55keV VMI+ and 70keV VMI and VMI+ reconstructions. ConclusionsTumor CNR peaked at 40keV VMI+ while observers preferred 55keV VMI+ series overall other series for dual-energy CT of lung cancer. The noise-optimized VMI+ technique showed significantly lower background noise and higher SNR and CNR compared to the traditional VMI technique at matching keV levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.