Abstract

Dendrites play an essential role in the integration of highly fluctuating input in vivo into neurons across all nervous systems. Yet, they are often studied under conditions where inputs to dendrites are sparse. The dynamic properties of active dendrites facing in vivo-like fluctuating input thus remain elusive. In this paper, we uncover dynamics in a canonical model of a dendritic compartment with active calcium channels, receiving in vivo-like fluctuating input. In a single-compartment model of the active dendrite with fast calcium activation, we show noise-induced nonmonotonic behavior in the relationship of the membrane potential output, and mean input emerges. In contrast, noise can induce bistability in the input-output relation in the system with slowly activating calcium channels. Both phenomena are absent in a noiseless condition. Furthermore, we show that timescales of the emerging stochastic bistable dynamics extend far beyond a deterministic system due to stochastic switching between the solutions. A numerical simulation of a multicompartment model neuron shows that in the presence of in vivo-like synaptic input, the bistability uncovered in our analysis persists. Our results reveal that realistic synaptic input contributes to sustained dendritic nonlinearities, and synaptic noise is a significant component of dendritic input integration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.