Abstract

BackgroundNoise is an important occupational hazard worldwide and hypertension a well-known risk factor for cardiovascular disease, which is currently the greatest cause of disability retirement worldwide. The association between noise exposure and auditory effects is well documented in the biomedical literature, but the same is not true about exposure to different levels of noise and extra-auditory effects. It has been shown that noise exposure levels to be considered for non-auditory effects may not be the same as in the case of auditory effects. The frequent presence of noise in workplace environments, the high prevalence of hypertension worldwide, the biological plausibility of the association between noise exposure and high blood pressure and the need for more studies investigating the non-auditory effects of exposures to less than 85 dB(A), were the reasons that led us to develop this study. We aimed at investigating the hypothesis that exposure to different levels of noise is associated with hypertension.MethodsWe used a cross-sectional design to study the association between occupational noise exposure (≤75, 75–85, and ≥ 85 dB(A)) and hypertension (use of anti-hypertensive medication and/or blood pressure of ≥140/90 mmHg) in 1,729 petrochemical workers at Rio de Janeiro, Brazil. Data were collected from obligatory annual health evaluation records and from environmental measurements of noise and heat levels. We used logistical regression analysis to study the association while controlling for key confounding variables, such as smoking and body mass index.ResultsUsing the ≤75 dB(A) as reference category, noise exposure was independently associated to hypertension both at the 75–85 dB(A) (OR 1.56; 95% CI 1.13–2.17) and the ≥85 dB(A) levels (OR 1.58; 95% CI 1.10–2.26). Age, gender and body mass index were also independently associated to high blood pressure.ConclusionHerein, we were able to demonstrate that noise exposure is independently associated to hypertension. Our results are consistent with other studies that used similar methodology and enabled us to verify the occurrence of non-auditory effects in workers exposed to noise levels considered safe for auditory effects.

Highlights

  • Noise is an important occupational hazard worldwide and hypertension a well-known risk factor for cardiovascular disease, which is currently the greatest cause of disability retirement worldwide

  • Workers in industrial maintenance were more likely to be in the higher level of noise exposure group (p = 0.00) as well as workers exposed to heat (p = 0.00)

  • Workers exposed to noise levels ≥ 85 dB(A) and those exposure to levels varying from 75–85 dB(A) presented a 60% higher probability of presenting high blood pressure when compared to workers exposed to noise levels ≤ 75 dB(A), after controlling for age, gender and Body Mass Index (BMI)

Read more

Summary

Introduction

Noise is an important occupational hazard worldwide and hypertension a well-known risk factor for cardiovascular disease, which is currently the greatest cause of disability retirement worldwide. The frequent presence of noise in workplace environments, the high prevalence of hypertension worldwide, the biological plausibility of the association between noise exposure and high blood pressure and the need for more studies investigating the non-auditory effects of exposures to less than 85 dB(A), were the reasons that led us to develop this study. Other health effects such as digestive and behavioral disorders [5], sleep disturbances [6], changes in the serum cortisol levels [7], cardiovascular diseases [8] and a higher incidence of occupational accidents [9,10] may be associated to noise exposure. High blood pressure is highly associated to cardiovascular de Souza et al BMC Public Health (2015) 15:328 disease and its high prevalence worldwide makes it one of the three leading risk factor for global disease burden [14]. According to the Brazilian Hypertension Society, high blood pressure affects, on average, 25% of the Brazilian population [16]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.