Abstract
.The decoherence effect on Grover algorithm has been studied numerically through a noise modelled by a depolarizing channel. Two types of error are introduced characterizing the qubit time evolution and gate application, so the noise is directly related to the quantum network construction. The numerical simulation concludes an exponential damping law for the successive probability of the maxima as time increases. We have obtained an allowed-error law for the algorithm: the error threshold for the allowed noise behaves as εth(N) ∼1/N1.1 (N being the size of the data set). As the power of N is almost one, we consider the Grover algorithm as robust to a certain extent against decoherence. This law also provides an absolute threshold: if the free evolution error is greater than 0.043, Grover algorithm does not work for any number of qubits affected by the present error model. The improvement in the probability of success, in the case of two qubits has been illustrated by using a fault-tolerant encoding of the initial state by means of the [[7,1,3]] quantum code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.