Abstract
Community detection in networks has become a very important axis of research for understanding the structure of networks. Several methods have been proposed to detect the most optimal community structure in networks. In this article, we present a novel method for detecting community structure ComDBNS (Community Detection Based on Node Similarity) for unweighted and undirected networks; it performs in two steps. The first step uses the similarity between endpoints of each link to find the inter-community links to remove in order to create basic groups of nodes properly connected. In the second step we propose a strategy to merge these initial groups to identify the final community structure (with k communities or the structure that maximizes the modularity in Community Detection Based on Node Similarity and Modularity Q (ComDBNSQ)). The proposed method is tested on the real and computer-generated networks, and it demonstrates the effectiveness and correctness of the method. Also, the method saves the time complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.