Abstract

Zinc oxide nanoparticles (ZnO NPs) doped with N and F ions were prepared by a simple sol-gel technique in the presence of various additives. The morphology and microstructure of the synthesized nanoparticles were characterized by means of SEM, XRD, BET surface area, UV–Vis-DRS, micro-Raman and photoluminescence. Characterization data highlighted the microstructural changes subsequent to introduction of the dopants into the lattice structure of ZnO nanoparticles. Conductometric gas sensors based on the N-doped ZnO, F-doped ZnO and NF co-doped ZnO NPs synthesized were fabricated and tested in the monitoring of low concentrations of NO2 in air. The effect of the different dopants on the sensing properties have been investigated and correlated with the morphological and microstructural characteristics. The impact of UV–Vis irradiation (λ = 400 nm) on the sensors performances was also studied. Results obtained have demonstrated that N-doped ZnO sensor displays the best NO2 sensing performances in dark and furthermore can be activated under UV–Vis irradiation to operate effectively at room temperature (RT).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.