Abstract

This paper is concerned with necessary and sufficient second-order conditions for finite-dimensional and infinite-dimensional constrained optimization problems. Using a suitably defined directional curvature functional for the admissible set, we derive no-gap second-order optimality conditions in an abstract functional analytic setting. Our theory not only covers those cases where the classical assumptions of polyhedricity or second-order regularity are satisfied but also allows to study problems in the absence of these requirements. As a tangible example, we consider no-gap second-order conditions for bang-bang optimal control problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.