Abstract

Abstract Observations of the Kepler-1625 system with Kepler and the Hubble Space Telescope have suggested the presence of a candidate exomoon, Kepler-1625b I, a Neptune-radius satellite orbiting a long-period Jovian planet. Here we present a new analysis of the Hubble observations, using an independent data reduction pipeline. We find that the transit light curve is well fit with a planet-only model, with a best-fit equal to 1.01. The addition of a moon does not significantly improve the fit quality. We compare our results directly with the original light curve from Teachey & Kipping, and find that we obtain a better fit to the data using a model with fewer free parameters (no moon). We discuss possible sources for the discrepancy in our results, and conclude that the lunar transit signal found by Teachey & Kipping was likely an artifact of the data reduction. This finding highlights the need to develop independent pipelines to confirm results that push the limits of measurement precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.