Abstract

Salt marshes are important sites of nitrogen cycling and removal that straddle the land/ocean interface, allowing them to intercept human-derived nitrogen before it reaches coastal waters where it causes problems like hypoxia and harmful algal blooms. In 2010, the Deepwater Horizon oil spill released an estimated five million barrels of crude oil into the Gulf of Mexico, significantly contaminating coastal wetlands over approximately 800 km of shoreline. We investigated microbial nitrogen cycling processes in soil from four salt marshes in Terrebonne Bay, Louisiana, USA that were either exposed or not exposed to Deepwater Horizon oil over the course of 1 year (2013–2014), 2.5–3.5 years post-spill. Specifically, we measured nitrification and denitrification potentials, nitrogen cycling functional gene abundances (nirS, bacterial and archaeal amoA), and soil physical and chemical properties. We show that variation in nitrification and denitrification potentials was independent of site oil exposure. Large year-to-year differences in springtime nitrification potentials were inversely related to plant live belowground biomass, indicating that competition for nitrogen is likely an important control on nitrification. There were positive correlations between nitrification potentials and both soil extractable nitrate concentrations and denitrification potentials, supporting the idea that denitrification is coupled with nitrification. We found no evidence that there was a long-term impact of oil exposure on salt marsh soil microbial nitrogen cycling processes and the nitrogen removal ecosystem service they provide. It is important to note, however, that these impacts could have been masked by high background variability in process rates or loss of oil exposed soil to coastal erosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.