Abstract

Based on long-slit infrared spectroscopic observations, it has been suggested that half of the carbon monoxide present in the atmosphere of Comet C/1995 O1 (Hale-Bopp) close to perihelion was released by a distributed source in the coma, whose nature (dust or gas) remains unidentified. We re-assess the origin of CO in Hale-Bopp’s coma from millimeter interferometric data and a re-analysis of the IR lines. Simultaneous observations of the CO J(1–0) (115 GHz) and J(2–1) (230 GHz) lines were undertaken with the IRAM Plateau de Bure interferometer in single-dish and interferometric modes. The diversity of angular resolutions (from 1700 to 42,000 km diameter at the comet) is suitable to study the radial distribution of CO and detect the extended source observed in the infrared. We used excitation and radiative transfer models to simulate the single-dish and interferometric data. Various CO density distributions were considered, including 3D time-dependent hydrodynamical simulations which reproduce temporal variations caused by the presence of a CO rotating jet. The CO J(1–0) and J(2–1) observations can be consistently explained by a nuclear production of CO. Composite 50:50 nuclear/extended productions with characteristic scale lengths of CO parent L p > 1500 km are rejected. Based on similar radiation transfer calculations, we show that the CO v = 1–0 ro-vibrational lines observed in Comet Hale-Bopp at heliocentric distances less than 1.5 AU are severely optically thick. The broad extent of the CO brightness distribution in the infrared is mainly due to optical depth effects entering in the emitted radiation. Additional factors can be found in the complex structure of the CO coma, and non-ideal slit positioning caused by the anisotropy of dust IR emission. We conclude that both CO millimeter and infrared lines do not provide compelling evidence for a distributed source of CO in Hale-Bopp’s atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.