Abstract

A new tetradentate N,N′-dipyridoxyl(1,2-ethylenediamine) [=H2ES] Schiff-base ligand and its Cu(II) salen complex [Cu(ES)(H2O)] are synthesized and characterized by IR, UV-Vis, 1H NMR, mass spectrometry, and elemental analysis. Their optimized geometries and theoretical vibrational frequencies are computed by using the density functional theory method where the B3LYP functional was used. Also, the 1H NMR chemical shifts of the H2ES ligand are calculated at the same computational level. In the optimized structure of the free ligand, two pyridine rings are not in the same plane. In the structure of the complex, the Schiff-base ligand acts as a dianionic tetradentate ligand in the N, N, O−, O− manner, so that the coordinating atoms occupy equatorial positions. The H2O ligand occupies the axial position of the squarepyramidal complex. The calculated results are consistent with the experimental ones, confirming the suitability of the optimized structures for the H2ES ligand and its Cu(II) complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.