Abstract
We consider a new approach to the nucleon-nucleon scattering problem in the framework of the higher-derivative formulation of baryon chiral perturbation theory. Starting with a Lorentz-invariant form of the effective Lagrangian we work out a new symmetry-preserving framework where the leading-order amplitude is calculated by solving renormalizable equations and corrections are taken into account perturbatively. Analogously to the KSW approach, the (leading) renormalization scale dependence to any finite order is absorbed in the redefinition of a finite number of parameters of the effective potential at given order. On the other hand, analogously to Weinberg's power counting, the one-pion-exchange potential is of leading order and is treated non-perturbatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.