Abstract

A class of uncertain nonlinear systems that are additionally driven by unknown covariance noise is considered. Based on the backstepping technique, adaptive neural control schemes are developed to solve the output tracking control problem of such systems. As it is proven by stability analysis, the proposed controller guarantees that all the error variables are bounded with desired probability in a compact set while the tracking error is mean-square semiglobally uniformly ultimately bounded (M-SGUUB). The tracking performance and the effectiveness of the proposed design are evaluated by simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.