Abstract
Nuclear magnetic resonance (NMR) spectroscopy reveals that higher-order aggregates of glucagon-like peptide-1-(7–36)-amide (GLP-1) in pure water at pH 2.5 are disrupted by 35% 2,2,2-trifluoroethanol (TFE), and form a stable and highly symmetric helical self-aggregate. NMR spectra show that the helical structure is identical to that formed by monomeric GLP-1 under the same experimental conditions [Chang et al., Magn. Reson. Chem. 37 (2001) 477–483; Protein Data Bank at RCSB code: 1D0R], while amide proton exchange rates reveal a dramatic increase of the stability of the helices of the self-aggregate. Pulsed-field gradient NMR diffusion experiments show that the TFE-induced helical self-aggregate is a dimer. The experimental data and model calculations indicate that the dimer is a parallel coiled coil, with a few hydrophobic residues on the surface that may cause aggregation in pure water. The results suggest that the coiled coil dimer is an intermediate state towards the formation of higher aggregates, e.g. fibrils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.