Abstract

We report a study of the NMR line shapes in hcp single crystals of H2 with ortho concentrationsX≤0.55 in the regime where there is no longer a transition to a long-range orientationally ordered phase. From the anisotropy of the o-H2 impurity NMR spectrum at low ortho concentration, reached by ortho-para conversion, the crystal orientation is determined. The second momentM2 can be represented by a function of the formM2=Φ(X, T)f(cos θHc), where θHc is the angle between the applied magnetic field and the crystalc axis. For a single crystal, the anisotropy functionf(cos θHc) is found to be independent of temperature and of ortho concentration within experimental error, and is in very good agreement with predictions based on the first term of the high-temperature expansion ofM2 and on other, more general symmetry arguments. An order parameter σ is defined and the distribution functionP(σ) is calculated from the NMR line shapes under the simplifying assumption that the anisotropy of the order parameter, which gives rise to the observed anisotropy ofM2, can be neglected. We giveP(σ) as a function ofX at low temperature, where the line shape is only weakly dependent onT, and as a function ofT at constantX. It is found that the line shapes andP(σ) in both situations evolve continuously and give no hint of a phase transition. These results are discussed in relation to those of magnetic spin-glasses, and it is concluded that the orientational regime in solid H2, called a quadrupolar glass by previous investigators, cannot be distinguished by symmetry from the orientationally disordered phase that occurs at high temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.