Abstract

Liquid state nuclear magnetic resonance (NMR) techniques have produced some spectacular successes in the construction of small quantum computers, and NMR is currently by far the leading technology for quantum computation. There are, however, a number of significant problems with any attempt to scale up the technology to produce computers of any useful size. While it is probable that some of these will be successfully sidestepped during the next few years, it is unlikely that they will all be solved; thus current liquid state NMR techniques are unlikely to provide a viable technology for practical quantum computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.