Abstract
Conformational dynamics play a crucial role in biological function. Dynein light chain protein (DLC8) acts as a cargo adaptor, and exists as a dimer under physiological conditions and dissociates into monomer below pH 4. In the present NMR study, we identified some dynamic residues in the dimer using chemical shift perturbation approach by applying small pH change. As evidenced by gel filtration and CD studies, this small pH change does not alter the globular structural features of the protein. In fact, these changes result in small local stability perturbations as monitored using temperature dependence of amide proton chemical shifts, and influence the dynamics of the dimer substantially. Further, interaction studies of the protein with a peptide containing the recognition motif of cargo indicated that the efficacy of peptide binding decreases when the pH is reduced from 7 to 6. These observations taken together support the conception that dynamics can regulate cargo binding/trafficking by the DLC8 dimer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.