Abstract
The P22 bacteriophage group is a subgroup of the λ phagesupercluster, comprised of the three major sequence types Sf6, P22, and CUS-3, based on their capsid proteins. Our goal is to investigate the extent to which structure-function relationships are conserved for the viral coat proteins and I-domains in this subgroup. Sf6 is a phage that infects the human pathogen Shigella flexneri. The coat protein of Sf6 assembles into a procapsid, which further undergoes maturation during DNA packaging into an infectious virion. The Sf6 coat protein contains a genetically inserted domain, termed the I-domain, similar to the ones present in the P22 and CUS-3 coat proteins. Based on the P22 example, I-domains play important functional roles in capsid assembly, stability, viability, and size-determination. Here we report the 1H, 15N, and 13C chemical shift assignments for the I-domain of the Sf6 phage coat protein. Chemical shift-based secondary structure prediction and hydrogen-bond patterns from a long-range HNCO experiment indicate that the Sf6 I-domain adopts a 6-stranded β-barrel fold like those of P22 and CUS-3 but with important differences, including the absence of the D-loop that is critical for capsid assembly and the addition of a novel disordered loop region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.