Abstract

The stability, structures and steric hindrances of recombinant RNases 2 and 4 expressed in bacteria were studied by circular dichroism (CD) and NMR techniques, and the results were compared with those of their authentic RNases extracted from oocytes of Rana catesbeiana. Although the overall structures of the recombinant and authentic proteins are almost identical, the extra N-terminal Met residue of the recombinant protein remarkably affects catalytic activity and stability. NMR chemical shift comparison of recombinant RNases and the authentic proteins indicated that the structural differences are mainly confined to the N-terminal helical and S2 anti-parallel beta-sheet regions. Significant shift changes for the residues located on the S2 region indicate that the major influences on the structure around the N terminus is due to the loss of the hydrogen bond between Pyr(1) and Val(95(96)) in recombinant RNases 2 and 4. We concluded the apparent steric hindrances of the extra Met to the binding pocket. As well, the affected conformational changes of active residues are attributed to the reduced activities of recombinant RNases. The structural integrity exerted by the N-terminal Pyr(1) residue may be crucial for amphibian RNases and the greatest structural differences occur on the network of the Pyr(1) residue and S2 beta-sheet region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.