Abstract

NLRX1 weakens lipopolysaccharide (LPS)-induced NF-κB activation on immune cells. Cytochrome P450 epoxygenase 2J2 (CYP2J2) attenuates LPS-induced cardiac injury by inhibiting NF-κB activation. However, it is still unclear whether NLRX1 could reduce LPS-induced heart damage and whether it is involved in the anti-LPS cardioprotective effect of CYP2J2. In this study, we found that NLRX1 knockout further exacerbated LPS-induced heart injury and up-regulated the proinflammatory cytokines in serum and heart tissue, and weakened the inhibitory effect of CYP2J2 on the harmful effects caused by LPS. We also found that LPS treatment induced ubiquitination of NLRX1 and promoted its binding to IKKα/β in myocardial tissue, which should theoretically inhibit NF-κB activation. However, LPS eventually leads to activation of NF-κB and NLRP3 inflammasome. Under the action of LPS, CYP2J2 further promoted the ubiquitination of NLRX1 and its binding to IKKα/β, impaired NF-κB activation and NLRP3 inflammasome activation. NLRX1 knockout notably aggravated LPS-induced NF-κB activation and NLRP3 inflammasome activation, and attenuated the inhibitory effects of CYP2J2 on NF-κB signal and NLRP3 inflammasome. More, CYP2J2 reduced LPS-induced reactive oxygen species (ROS) production and mitochondrial depolarization in heart cells, thereby inhibiting NLRP3 inflammasome activation. NLRX1 knockdown aggravated mitochondrial depolarization induced by LPS and weakened the protective effect of CYP2J2 on mitochondrial potential, although it had no significant effect on reactive oxygen species production. Together, these findings demonstrated that NLRX1 knockout aggravated LPS-induced heart injury and weakened the anti-LPS cardioprotective effect of CYP2J2 by enhancing activation of NF-κB and NLRP3 inflammasome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.