Abstract

Natural killer (NK) cells are programmed to kill target cells without prior antigen priming. Because of their potent cytolytic activities, NK cells are one of the key cell types involved in dismantling allografts. However, in certain transplant models, NK cells also express potent immunoregulatory properties that promote tolerance induction. The precise mechanism for such striking dichotomy remains unknown. In the present study, we showed in a skin transplant model that the skin allografts contain a subset of antigen-presenting cells (APCs) that can home to the recipient mice. We also showed that such graft-derived APCs are usually destroyed by the host NK cells. But in the absence of NK cells, donor APCs can survive and then migrate to the host lymphoid and extralymphoid sites where they directly stimulate the activation of alloreactive T cells. T cells activated in the absence of NK cells are more resistant to costimulatory blockade treatment, and under such conditions stable skin allograft survival is difficult to achieve. Our study identified a novel role for NK cells in regulating T cell priming in transplant models, and may have important clinical implications in tolerance induction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.