Abstract
Abstract. The mechanisms of microbial nitrous oxide (N2O) production in the ocean have been the subject of many discussions in recent years. New isotopomeric tools can further refine our knowledge of N2O sources in natural environments. This study compares hydrographic, N2O concentration, and N2O isotopic and isotopomeric data from three stations along a coast-perpendicular transect in the South Pacific Ocean, extending from the center (Sts. GYR and EGY) of the subtropical oligotrophic gyre (~26° S; 114° W) to the upwelling zone (St. UPX) off the central Chilean coast (~34° S). Although AOU/N2O and NO3− trends support the idea that most of the N2O (mainly from intermediate water (200–600 m)) comes from nitrification, N2O isotopomeric composition (intramolecular distribution of 15N isotopes) expressed as SP (site preference of 15N) shows low values (10 to 12\\permil) that could be attributed to the production through of microbial nitrifier denitrification (reduction of nitrite to N2O mediated by ammonium oxidizers). The coincidence of this SP signal with high – stability layer, where sinking organic particles can accumulate, suggests that N2O could be produced by nitrifier denitrification inside particles. It is postulated that deceleration of particles in the pycnocline can modify the advection - diffusion balance inside particles, allowing the accumulation of nitrite and O2 depletion suitable for nitrifier denitrication. As lateral advection seems to be relatively insignificant in the gyre, in situ nitrifier denitrification could account for 40–50% of the N2O produced in this layer. In contrast, coastal upwelling system is characterized by O2 deficient condition and some N deficit in a eutrophic system. Here, N2O accumulates up to 480% saturation, and isotopic and isotopomer signals show highly complex N2O production processes, which presumably reflect both the effect of nitrification and denitrification at low O2 levels on N2O production, but net N2O consumption by denitrification was not observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.