Abstract

As a precursor to various reactive nitrogen species formed in biological systems, nitric oxide (•NO) participates in numerous processes, including enhancing DNA radiosensitivity in ionizing radiation-based radiotherapy. Forming guanine radical cations is another common DNA lesion resulting from ionization and oxidation damage. As such, the interaction of •NO with guanine radical cations (G•+) may contribute to the radiosensitization of •NO. An intriguing aspect of this process is the participation of multiple spin configurations in the reaction, including open-shell singlet 1,OS[G•+(↑)⋯(↓)•NO], closed-shell singlet 1,CS[G(↑↓)⋯NO+], and triplet 3[G•+(↑)⋯(↑)•NO]. In this study, the reactions of •NO with both unsubstituted guanine radical cations (in the 9HG•+ conformation) and 9-methylguanine radical cations (9MG•+, a guanosine-mimicking model compound) were investigated in the absence and presence of monohydration of radical cations. Kinetic-energy dependent reaction product ions and cross sections were measured using an electrospray ionization guided-ion beam tandem mass spectrometer. The reaction mechanisms, kinetics, and dynamics were comprehended by interpreting the reaction potential energy surface using spin-projected density functional theory, coupled cluster theory, and multiconfiguration complete active space second-order perturbation theory, followed by RRKM kinetics modeling. The combined experimental and computational findings revealed closed-shell singlet 1,CS[7-NO-9MG]+ as the major, exothermic product and triplet 3[8-NO-9MG]+ as the minor, endothermic product. Singlet biradical products were not detected due to high reaction endothermicities, activation barriers, and inherent instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.