Abstract

Nitrogenated porous carbon materials, made by coating the pore surface with nitrogen functional groups from the pyrolysis of hexamine, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy, the nitrogen content of the nitrogenated carbon sample was found to be 14 wt%. Electrochemical properties from potentiostatic and galvanostatic measurements, and open circuit voltage (OCV) were used to evaluate the effect of nitrogen in porous carbon electrodes. The nitrogenated carbon exhibits pseudocapacitive behavior and an increase in capacitance that is almost double that of plain porous carbon. The cyclic stability is also improved, as the sample retains its high capacitance even after extensive cycling. Also, the nitrogenated carbon shows battery-like characteristics with an initial OCV of ca. 0.4 V, and an OCV of ca. 0.3 V after cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.