Abstract
Xylem sap primarily transports water and mineral nutrients such as nitrogen (N) from roots to shoots in vascular plants. However, it remains largely unknown how nitrogenous compounds, especially proteins in xylem sap, respond to N under- or over-supply. We found that reducing N supply increased amino-N percentage of total N in maize (Zea mays L.) xylem sap. Proteomic analysis showed that 23 proteins in the xylem sap of maize plants, including 12 newly identified ones, differentially accumulated in response to various N supplies. Fifteen of these 23 proteins were primarily involved in general abiotic or biotic stress responses, whereas the other five proteins appeared to respond largely to N under- or over-supply, suggesting distinct protein responses in maize xylem upon N under- and over-supply. Furthermore, one putative xylanase inhibitor and two putative O-glycosyl hydrolases had preferential gene expression in shoots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.