Abstract

Intravascular bubble formation and symptoms of decompression sickness have been reported during repetitive deep breath-hold diving. Therefore we examined the pattern of blood N2 kinetics during and after repetitive breath-hold diving. To study muscle N2 uptake and release, we measured brachial venous N2 partial pressure (PN2) in nine professional Korean breath-hold divers (ama) during a 3-h diving shift at approximately 4 m seawater depth and up to 4 h after diving. PN2 was determined with the manometric Van Slyke method. Diving time and depth were recorded using a backpack computer-assisted dive longer that allowed calculating the surface-to-depth time ratio to derive the effective depth. With the assumption that forearm muscle N2 kinetics follow the general Haldanian principles of compression and decompression, i.e., forearm muscle is a single compartment with a uniform tissue PN2 equal to venous PN2, PN2 data were fitted to monoexponential functions of time. In the early phase of the diving shift, PN2 rapidly increased to 640 Torr (half time = 6 min) and then slowly declined to baseline levels (half time = 36 min) after the work shift. Peak PN2 levels approximated the alveolar PN2 derived from the effective depth. We conclude that forearm muscle N2 kinetics are well described by a Haldanian single-compartment model. Decompression sickness is theoretically possible in the ama; it did not occur because the absolute PN2 remained low due to the shallow working depth of the ama we studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.