Abstract

Bifunctional alkylating agents are used in tumor chemotherapy to induce the death of malignant cells through blockage of DNA replication. Nitrogen mustards are commonly used chemotherapeutic agents that can bind mono- or bifunctionally to guanines in DNA. Mustard HN1 is considered a monofunctional analog of bifunctional mustard HN2 (mechlorethamine). Escherichia coli K12 mutant strains deficient in nucleotide excision repair (NER) or base excision repair (BER) were submitted to increasing concentrations of HN2 or HN1, and the results revealed that damage induced by each chemical demands different DNA repair pathways. Damage induced by HN2 demands the activity of NER with a minor requirement of the BER pathway, while HN1 damage repair depends on BER action, without any requirement of NER function. Taken together, our data suggest that HN1 and HN2 seem to induce different types of damage, since their repair depends on distinct pathways in E. coli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.