Abstract
The effect of rainfall and nitrogen (N) input on nitrate leaching in a rain-fed peanut–oilseed rape system on an acidic soil in subtropical China was investigated in a field lysimeter experiment from 1997 to 2000. Drainage and nitrate leaching were simulated using the Water and Nitrogen Management Model (WNMM). Nitrate concentrations in the drainage water and nitrate leaching increased with increasing N application rate. Annual leaching losses ranged from 21.1 to 46.3 kg N ha−1 (9.5–16.8%) for inputs between 0 and 150 kg N ha−1. Growth of oilseed rape decreased the nitrate concentration in the drainage water, but growing N fixing peanuts did not. Rainfall had a greater impact on nitrate leaching than crop uptake. Nitrate concentrations in the drainage water were relatively low (1.95–4.33 mg N l−1); this was caused by the high precipitation, the low nitrification rate, and the low residual nitrate in the soil. The loss of nitrate was low during the dry season (October–February) and in the dry year (rainfall 17% below average) mainly as a result of reduced drainage. WNMM satisfactorily simulated the inter-monthly variation in drainage and total nitrate leached, with respective relative root mean square errors of 42.7% and 70.2%, mean modelling efficiencies of 0.88 and 0.67, and mean relative errors of −3.82% and 21.8%. The modelled annual N losses were only 1–7% less than the observed values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.