Abstract
Nitrogen (N) deposition resulting from anthropogenic activities poses threats to ecosystem stability by reducing plant and microbial diversity. However, the role of soil microbes, particularly arbuscular mycorrhizal fungi (AMF), as mediators of N-induced shifts in plant diversity remains unclear. In this study, we conducted 6 and 11 years of N addition field experiments in a temperate steppe to investigate AMF richness and network stability and their associations with plant species richness in response to N deposition. The N fertilization, especially in the 11 years of N addition, profoundly decreased the AMF richness and plant species richness. Furthermore, N fertilization significantly decreased the AMF network complexity and stability, with these effects becoming more enhanced with the increase in N addition duration. AMF richness and network stability showed positive associations with plant diversity, and these associations were stronger after 11 than 6 years of N addition. Our findings suggest that N deposition may lead to plant diversity loss via a reduction of AMF richness and network stability, with these effects strengthened over time. This study provides a better understanding of plant-AMF interactions and their response to the prevailing global N deposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.