Abstract

In order to achieve efficient development of green and sustainable industries and improve energy efficiency, the growth of highly efficient catalysts with photoresponse from ultraviolet (UV) to near-infrared (NIR) region is of great significance for the reduction of nitrogen to ammonia. Herein, we reported binary nanohybrids composed of nitrogen vacancy-rich two dimensional (2 D) g-C3N4 and oxygen vacancy-rich 2 D BiO2−x (CN/BiO). Both experimental results and DFT calculations indicated that the synergistic effect of the heterostructure in CN/BiO effectively suppresses the recombination of photogenerated electron-hole pairs. Advancing from the efficient charge separation, N2 adsorbed on the nitrogen vacancy and oxygen vacancy sites can effectively receive high-energy electrons, which in turn promote NH3 production. Impressively, the CN/BiO exhibited remarkable ammonia yield rate of 602.1 μmol g−1 h−1 with > 420 nm light irradiation. More crucially, superior activity under NIR light was indeed accomplished for CN/BiO with the NH3 production rates up to 89.4 μmol g−1 h−1 using > 780 nm light irradiation. This study provided a novel synthetic route to prepare highly active and full-spectrum light-driven heterojunction photocatalysts toward sustainable and scalable solar-to-NH3 production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.