Abstract

The study tested the hypothesis that resupplying nitrogen after a period of nitrogen stress leads to restoration of the balance between root and shoot growth and normal functional activity. Nonnodulated soybean plants were grown hydroponically for 14 days with 1.0 mM NO3- in a complete nutrient solution. One set of plants was continued on the complete nutrient solution for 25 days; a second set was given 0.0 mM NO3- for 25 days; and the third set was given 0.0 mM NO3- for 10 days followed by transfer to the complete solution with 1.0 mM NO3- for 15 days. In continuously nitrogen-stressed plants, emergence and expansion of main-stem and branch leaves were severely inhibited as low nitrogen content limited further growth. This was followed by a shift in partitioning of dry matter from the leaves to the roots, resulting in an initial stimulation of root growth and a decreased shoot:root ratio. Reduced nitrogen also was redistributed from the leaves into the stem and roots. When nitrogen stress was relieved, leaf initiation and expansion were renewed. With the restoration of the balance between root and shoot function, the shoot:root ratio and distribution of reduced nitrogen within the plant organs returned to levels similar to those of nonstressed plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.