Abstract

Increasing nitrogen (N) deposition has considerable effects on soil organic matter (SOM) decomposition mediated by soil enzyme activities. Few studies, however, have explored how N addition shapes soil enzyme activity patterns by changing plants, soils and microbes. We conducted a five-year field fertilization experiment (0, 5, 10, and 15 g N m−2 yr.−1) to study how N addition affected soil enzyme activity patterns in the topsoil (0–20 cm) and subsoil (20–40 cm) in a Tibetan alpine meadow. Enzyme activity patterns were calculated by the percentage of the sum of all measured enzyme activities. The composition of the plant and microbial communities were evaluated through measuring the abundance of plant functional groups and quantifying microbial phospholipid fatty acids (PLFAs), respectively. Soil pH and available N were also measured. We found that soil N availability primarily controlled plant community composition, but pH controlled the composition of the microbial community, irrespective of soil depth. Soil enzyme activity patterns differed between two soil depths and among N addition rates. Importantly, N addition shaped soil enzyme activity patterns through the changes in soil pH rather than via the composition of the plant and microbial communities. Our findings indicate that N addition can affect components of plant-soil system and, in particular, weaken the linkages between plant and microbial communities and enzyme activity patterns. The work suggests that N enrichment-induced soil acidification plays a key role in SOM decomposition and nutrient cycling in the Tibetan meadow ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.