Abstract

Drug repurposing has gained much attention as a cost-effective strategy that plays an exquisite role in identifying undescribed biological activities in clinical drugs. In the present work, we report the repurposing of the antibacterial drug nitrofurazone (NFZ) as a potential anticancer agent against CaCo-2, MDA-MB 231 and HepG-2 cancer cell lines. Novel series of nitrofurazone analogs were then designed considering the important pharmacologic features present in NFZ. Synthesis and biological evaluation of the target compounds revealed their promising anticancer activities endowed with antimicrobial potential and possessing better lipophilicity than NFZ. Compound 7, exclusively, inhibited the growth of all tested cancer cells more potently than NFZ with the least cytotoxicity against normal cells, displaying anti Gram-positive bacterial activities and antifungal potential. Analysis of the stereo-electronic properties of compound 7 via investigating the energies of HOMO, LUMO, HOMO-LUMO energy gap and MEP maps demonstrated its high reactivity and the expected molecular mechanism of action through reduction of the 5-nitrofuryl moiety. Data of the bioactivity studies indicated that the potent anticancer activity of 7 is mainly through increasing intracellular ROS levels and induction of apoptosis via significantly down-regulating the expression of Bcl-2 while up-regulating BAX, p53 and caspase 3 expression levels. Compound 7 potently inhibited the cellular expression levels of antioxidant enzymes GPx1 and GR compared to NFZ. Antioxidant enzymes kinetic studies and blind molecular docking simulations disclosed the mechanistic and structural aspects of the interaction between 7 and both GR and GPx1. Thus, the successful discovery of 7 as a potential dual anticancer-antimicrobial nitrofurazone analog might validate the applicability of drug repurposing strategy in unravelling the unrecognized bioactivity of the present conventional drugs, besides furnishing the way towards more optimization and development studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.