Abstract

Skeletal muscle functions regulated by NO are now firmly established. However, the knowledge about the NO synthase (NOS) expression related to a defined fibre type in human skeletal muscles necessitates further clarification. To address this issue, we examined localization of NOS isoforms I, II and III, in human skeletal muscles employing immunocytochemical labeling with tyramide signal amplification complemented with enzyme histochemistry and Western blotting. The NOS immunoreactivity was related to fibre types of different classification systems: physiological classification into slow and fast, ATPase classification into I, IIA, IIAX, IIX, and physiological-metabolic classification into slow-oxidative (SO), fast-oxidative glycolytic (FOG) and fast-glycolytic (FG). We found a correlation of NOS I-III immunoreactivity to metabolic defined fibre types with strong expression in FOG fibres. This implies that NO as modulator of muscle function is involved in oxidative metabolism in connection with fast force development, which only occurs in FOG fibres. The NOS expression showed no correlation to ATPase fibre subtypes due to the metabolic heterogeneity of ATPase fibre types. Healthy and affected vastus medialis muscles after anterior cruciate ligament rupture revealed similar NOS expression level as shown by Western blotting with, however, different expression patterns related to the fibre types in affected muscles. This suggests an altered modulation of force development in the fibres of diseased muscles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.