Abstract

The capacity of macrophages from SCID and C.B-17 mice to kill Candida albicans via a nitric oxide (NO)-dependent pathway and the contribution of NO in resistance to mucosal candidiasis were assessed. In vitro, an inhibitor of NO synthase (NOS) reduced the candidacidal activity and nitrite-producing capacity of activated resident peritoneal macrophages from immunocompetent C.B-17 and immunodeficient SCID mice. In vivo, stomachs from gnotobiotic SCID mice that were colonized with a pure culture of C. albicans had low-grade infections and expressed inducible NOS (iNOS) mRNA. C. albicans-monoassociated SCID mice treated with an inhibitor of NOS had more severe orogastric candidiasis than controls. These data suggest that NO contributes to the candidacidal capacity of activated macrophages from C.B-17 and SCID mice and that NO synthesized by iNOS may contribute to the resistance of SCID mice to mucosal candidiasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.