Abstract

The function and mechanism of nitric oxide (NO) in regulating Pleurotus eryngii biological response to cadmium (Cd) stress was evaluated by using anti-oxidation and short-chain dehydrogenase/reductase (SDR) family analysis. The fresh biomass of P. eryngii mycelia sharply decreased after treatment with 50µM Cd; the lipid peroxidation and H2O2 accumulation in P. eryngii were found responsible for it. Proper exogenous supply of NO (150µM SNP) alleviated the oxidative damage induced by Cd stress in P. eryngii, which reduced the accumulation of thiobarbituric acid reactive substances (TBARS) and H2O2. The activities of antioxidant enzymes (superoxide dismutase, peroxidase) were significantly increased to deal with Cd stress when treated with SNP (150µM), and the content of proline was also closely related to NO-mediated reduction of Cd toxicity. Moreover, SDR family members were widely involved in the response to Cd stress, especially PleSCH70 gene was observed for the first time in participating in NO-mediated enhancement of Cd tolerance in P. eryngii. Taken together, this study provides new insights in understanding the tolerance mechanisms of P. eryngii to heavy metal and lays a foundation for molecular breeding of P. eryngii to improve its tolerance to environmental stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.