Abstract

Nitric oxide (NO) reacts with catecholamines resulting in their deactivation. In this study, we demonstrated that coincubation of NO donors with sympathetic neurotransmitters decreased the amount of norepinephrine detected but not ATP or neuropeptide Y (NPY). Furthermore, we found that the ability of norepinephrine to increase perfusion pressure in the isolated perfused mesenteric arterial bed of the rat was attenuated by the incubation of norepinephrine with the NO donor diethylamine NONOate. Conversely, the vasoconstrictive ability of NPY and ATP was unaffected by incubation with NONOate. Periarterial nerve stimulation in the presence of the NO synthase (NOS) inhibitor Nomega-nitro-l-arginine methyl ester (l-NAME) resulted in an increase in both perfusion pressure response and norepinephrine levels. This was prevented by l-arginine, demonstrating that the effects of l-NAME were indeed specific to the inhibition of NOS. To confirm that NO was not altering the release of norepinephrine from the sympathetic nerve via presynaptic activation of guanylate cyclase, we repeated the experiments in the presence of the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxaloine-one (ODQ). Unlike l-NAME, ODQ infusion did not increase norepinephrine overflow, demonstrating that modulation of norepinephrine by NO at the vascular neuroeffector junction of the rat mesenteric vascular bed is not the result of presynaptic guanylate cyclase activation. These results demonstrate that, in addition to being a direct vasodilatator, NO can also alter vascular reactivity at the sympathetic neuroeffector junction in the rat mesenteric bed by deactivating the vasoconstrictor norepinephrine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.