Abstract

Proteins are targets of reactive nitrogen species such as peroxynitrite and nitrogen dioxide. Among the various amino acids in proteins, tryptophan residues are especially susceptible to attack by reactive nitrogen species. We carried out experiments on the reactions of peroxynitrite and other reactive nitrogen species with N-acetyl- l-tryptophan under various conditions. Four major products were identified as 1-nitroso- N-acetyl- l-tryptophan, 1-nitro- N-acetyl- l-tryptophan, 6-nitro- N-acetyl- l-tryptophan, and N-acetyl- N′-formyl- l-kynurenine on the basis of their mass and UV spectra. The reactions with SIN-1 (a peroxynitrite generator), Angeli's salt (a nitroxyl donor), and spermine NONOate (a nitric oxide donor) generated the nitroso derivative but not the nitro derivatives. A myeloperoxidase–H 2O 2–NO 2 − system generated the nitro derivatives but not the nitroso derivative. Under physiological conditions 6-nitro- N-acetyl- l-tryptophan was stable, whereas the 1-nitroso and 1-nitro derivatives decomposed with half-lives of 1.5 and 18 h, respectively. After treatment with various reactive nitrogen species, bovine serum albumin was enzymatically hydrolyzed and analyzed for 6-nitro- l-tryptophan and 3-nitro- l-tyrosine by HPLC with electrochemical detection. Levels of 6-nitro- l-tryptophan and 3-nitro- l-tyrosine were similar in the nitrated protein. 6-Nitro- l-tryptophan in proteins can be measured as an additional biomarker of protein nitration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.