Abstract

ABSTRACT Nitrification is a biochemical process that allows oxidation of ammonium ion to nitrite, and nitrite to nitrate in a system. Aerobic processes, such as use of submerged biological aerated filter (SBAF), enable nitrification. However, some variables that are entirely unavailable or not available at the required concentration range may hamper the process. In this study, nitratation under high dissolved oxygen (DO) concentrations was evaluated in laboratory-scale bioreactors containing 10% inoculum (0.5 kg kg−1) fed with affluent from a SBAF that receive the sewage generated from washing the bays of a dog kennel. The following variables were monitored over time: ammoniacal nitrogen (12.44–29.62 mg L−1), nitrite (0.28–0.54 mg L−1), nitrate (1.75–3.55 mg L−1), pH (8.11 ± 0.62), temperature (21.61 ± 1.24°C) and DO (9.69 ± 0.36 mg L−1). Quantification of nitrifying bacteria by the multiple tube technique showed the value of 1.4 × 1012 MPN mL−1for ammonia-oxidizing bacteria (AOB) and 9.2 × 1014 MPN mL−1 for nitrite-oxidizing bacteria. These values were higher than those found in a synthetic medium, which can be explained by the greater availability of ammonium and nitrite in the effluent. By the extraction of genomic DNA, and PCR, with specific primers, the presence of the AmoA (Ammonia monooxygenase) gene for AOB and of the Nitrobacter was detected in the bioreactor samples. By PCR-DGGE, the sequenced bands showed high similarity with denitrifying bacteria, such as Pseudomonas, Limnobacter, Thauera, Rhodococcus, and Thiobacillus. Thus, the saturation of dissolved oxygen in the system resulted in improvement in the nitratation step and allowed detection of bacterial genera involved in the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.